Abstract
Abstract
The Higgs triplet model (HTM) extends the Standard Model (SM) by one complex triplet scalar (also known as the type-II seesaw model), offering a simple and viable way to account for nonzero neutrino masses. On the other hand, the nontrivial couplings of the triplet to the gauge fields and to the SM Higgs field are expected to influence the topological vacuum structure of the SM, and consequently, the energy and the field configuration of the electroweak sphaleron. The sphaleron process plays a crucial role in dynamically generating the baryon asymmetry of the Universe. In this work, we study the vacuum structure of the gauge and Higgs fields and calculate the saddle-point sphaleron configuration in the HTM. The coupled nonlinear equations of motion of the sphaleron are solved using the spectral method. We find the inclusion of the triplet scalar could in principle significantly change the sphaleron energy compared with the SM. Nevertheless, at zero temperature, the current stringent experimental constraint on the vacuum expectation value of the triplet suppresses the difference. Interestingly, we find that there still exists some narrow parameter space where the sphaleron energy can be enhanced up to 30% compared with the SM case.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference82 articles.
1. Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
2. I. Esteban et al., The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
3. Z.-Z. Xing, Flavor structures of charged fermions and massive neutrinos, Phys. Rept. 854 (2020) 1 [arXiv:1909.09610] [INSPIRE].
4. D. Bodeker and W. Buchmuller, Baryogenesis from the weak scale to the grand unification scale, Rev. Mod. Phys. 93 (2021) 035004 [arXiv:2009.07294] [INSPIRE].
5. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献