Pseudo Entropy in U(1) gauge theory

Author:

Mukherjee Jyotirmoy

Abstract

Abstract We study the properties of pseudo entropy, a new generalization of entanglement entropy, in free Maxwell field theory in d = 4 dimension. We prepare excited states by the different components of the field strengths located at different Euclidean times acting on the vacuum. We compute the difference between the pseudo Rényi entropy and the Rényi entropy of the ground state and observe that the difference changes significantly near the boundary of the subsystems and vanishes far away from the boundary. Near the boundary of the subsystems, the difference between pseudo Rényi entropy and Rényi entropy of the ground state depends on the ratio of the two Euclidean times where the operators are kept. To begin with, we develop the method to evaluate pseudo entropy of conformal scalar field in d = 4 dimension. We prepare two states by two operators with fixed conformal weight acting on the vacuum and observe that the difference between pseudo Rényi entropy and ground state Rényi entropy changes only near the boundary of the subsystems. We also show that a suitable analytical continuation of pseudo Rényi entropy leads to the evaluation of real-time evolution of Rényi entropy during quenches.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entanglement entropy and the boundary action of edge modes;Journal of High Energy Physics;2024-06-18

2. Notes on time entanglement and pseudo-entropy;The European Physical Journal C;2024-05-14

3. Pseudo entropy and pseudo-Hermiticity in quantum field theories;Journal of High Energy Physics;2024-05-07

4. Sum rule for the pseudo-Rényi entropy;Physical Review D;2024-05-06

5. Further remarks on de Sitter space, extremal surfaces, and time entanglement;Physical Review D;2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3