Resonance-aware NLOPS matching for off-shell $$ t\overline{t} $$ + tW production with semileptonic decays

Author:

Ježo Tomáš,Lindert Jonas M.,Pozzorini Stefano

Abstract

Abstract The increasingly high accuracy of top-quark studies at the LHC calls for a theoretical description of $$ t\overline{t} $$ t t ¯ production and decay in terms of exact matrix elements for the full 2 → 6 process that includes the off-shell production and the chain decays of $$ t\overline{t} $$ t t ¯ and tW intermediate states, together with their quantum interference. Corresponding NLO QCD calculations matched to parton showers are available for the case of dileptonic channels and are implemented in the bb4l Monte Carlo generator, which is based on the resonance-aware POWHEG method. In this paper, we present the first NLOPS predictions of this kind for the case of semileptonic channels. In this context, the interplay of off-shell $$ t\overline{t} $$ t t ¯ + tW production with various other QCD and electroweak subprocesses that yield the same semileptonic final state is discussed in detail. On the technical side, we improve the resonance-aware POWHEG procedure by means of new resonance histories based on matrix elements, which enable a realistic separation of $$ t\overline{t} $$ t t ¯ and tW contributions. Moreover, we introduce a general approach which makes it possible to avoid certain spurious terms that arise from the perturbative expansion of decay widths in any off-shell higher-order calculation, and which are large enough to jeopardise physical finite-width effects. These methods are implemented in a new version of the bb4l Monte Carlo generator, which is applicable to all dileptonic and semileptonic channels, and can be extended to fully hadronic channels. The presented results include a NLOPS comparison of off-shell against on-shell $$ t\overline{t} $$ t t ¯ + tW production and decay, where we highlight various non-trivial aspects related to NLO and parton-shower radiation in leptonic and hadronic top decays.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3