Importance of generalized μτ symmetry and its CP extension on neutrino mixing and leptogenesis

Author:

Samanta Rome,Sinha Roopam,Ghosal Ambar

Abstract

Abstract Within the framework of residual symmetry, two 2 type associate μτ inter- change symmetries robustly constrain the Dirac CP phase δ in a model independent way. Both of them predict simultaneous maximality of δ and the atmospheric mixing angle θ 23. We show how these well known correlations will be changed if we generalize the μτ in- terchange symmetry to a μτ mixing symmetry. In particular, we show that the stringent condition of simultaneous maximality could be relaxed even with a very small departure from the exact μτ interchange. In addition, the present neutrino data on δ and θ 23 can be explained better by the mixing symmetry. After discussing the impact of the μτ mix- ing in some realistic neutrino mass models, we show how the proposed mixing could be realized with two simultaneous CP transformations which also lead to novel and testable correlations between δ and the mixing angles θij . Next we discuss in particular, the ‘three flavour regime’ of leptogenesis within the CP extended framework and show, unlike the ordinary CP extended μτ interchange symmetry, a resonant leptogenesis is possible due the generalization of μτ interchange to the μτ mixing and the resulting baryon asymmetry always requires a nonmaximal θ 23 owing to the fact that the baryon to photon ratio ηB vanishes in the exact limit of θ 23 = π/4. This is one of the robust predictions of this frame- work. The CP extended μτ mixing is also a novel example of a low energy effective model that provides an important insight to the off-diagonal terms of the flavour coupling matrix which have usually been neglected in literature to compute the final baryon asymmetry, in particular in the models with flavour symmetries.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3