Abstract
Abstract
We present the colourful antenna subtraction method, a reformulation of the antenna subtraction scheme for next-to-next-to-leading order (NNLO) calculations in QCD. The aim of this new approach is to achieve a general and process-independent construction of the subtraction infrastructure at NNLO. We rely on the predictability of the infrared singularity structure of one- and two-loop amplitudes in colour space to generate virtual subtraction terms and, subsequently, we define an automatable procedure to systematically infer the expression of the real subtraction terms, guided by the correspondence between unintegrated and integrated antenna functions. To demonstrate the applicability of the described approach, we compute the full colour NNLO correction to gluonic three-jet production pp(gg) → ggg, in the gluons-only assumption.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference88 articles.
1. R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141 [arXiv:1105.4319] [INSPIRE].
2. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].
3. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
4. S. Kallweit, J.M. Lindert, P. Maierhofer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].
5. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献