Holographic complexity of LST and single trace $$ T\overline{T} $$, $$ J\overline{T} $$ and $$ T\overline{J} $$ deformations

Author:

Katoch Gaurav,Mitra Swejyoti,Roy Shubho R.ORCID

Abstract

Abstract This work is an extension of our previous work [1] where we exploited holography to compute the complexity characteristics of Little String Theory (LST), a nonlocal, nongravitational field theory which flows to a local 2d CFT in the IR under RG via an integrable irrelevant $$ \left(T\overline{T}\right) $$ T T ¯ deformation. Here we look at the more general LST obtained by UV deforming the 2d CFT by incorporating Lorentz violating irrelevant $$ J\overline{T} $$ J T ¯ and $$ T\overline{J} $$ T J ¯ deformations on top of $$ T\overline{T} $$ T T ¯ deformation, in an effort to capture the novel signatures of Lorentz violation (on top of nonlocality) on quantum complexity. In anticipation of the fact that the dual field theory is Lorentz violating, we compute the volume complexity in two different Lorentz frames and the comparison is drawn between the results. It turns out that for this system the nonlocality and Lorentz violation effects are inextricably intertwined in the UV divergence structure of the quantum complexity. The coefficients of the divergences carry the signature of Lorentz boost violation. We also compute the subregion complexity which displays a (Hagedorn) phase transition with the transition point being the same as that for the phase transition of entanglement entropy [2]. These new results are consistent with our previous work [1]. Null warped AdS3 is treated as special case of interest.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Krylov complexity of deformed conformal field theories;Journal of High Energy Physics;2024-08-07

2. Quantum complexity and bulk timelike singularities;Journal of High Energy Physics;2023-12-13

3. Complexity of warped conformal field theory;The European Physical Journal C;2023-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3