The 4d superconformal index near roots of unity and 3d Chern-Simons theory

Author:

Ardehali Arash Arabi,Murthy Sameer

Abstract

Abstract We consider the S3×S1 superconformal index ℐ(τ) of 4d $$ \mathcal{N} $$ N = 1 gauge theories. The Hamiltonian index is defined in a standard manner as the Witten index with a chemical potential τ coupled to a combination of angular momenta on S3 and the U(1) R-charge. We develop the all-order asymptotic expansion of the index as q = e2πiτ approaches a root of unity, i.e. as $$ \overset{\sim }{\tau } $$ τ ~ +n → 0, with m, n relatively prime integers. The asymptotic expansion of log ℐ(τ) has terms of the form $$ \overset{\sim }{\tau } $$ τ ~ k, k = 2, −1, 0, 1. We determine the coefficients of the k = 2, −1, 1 terms from the gauge theory data, and provide evidence that the k = 0 term is determined by the Chern-Simons partition function on S3/ℤm. We explain these findings from the point of view of the 3d theory obtained by reducing the 4d gauge theory on the S1. The supersymmetric functional integral of the 3d theory takes the form of a matrix integral over the dynamical 3d fields, with an effective action given by supersymmetrized Chern-Simons couplings of background and dynamical gauge fields. The singular terms in the $$ \overset{\sim }{\tau } $$ τ ~ → 0 expansion (dictating the growth of the 4d index) are governed by the background Chern-Simons couplings. The constant term has a background piece as well as a piece given by the localized functional integral over the dynamical 3d gauge multiplet. The linear term arises from the supersymmetric Casimir energy factor needed to go between the functional integral and the Hamiltonian index.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3