Higher spin supersymmetry at the cosmological collider: sculpting SUSY rilles in the CMB

Author:

Alexander Stephon,James Gates S.,Jenks Leah,Koutrolikos K.,McDonough Evan

Abstract

Abstract We study the imprint of higher spin supermultiplets on cosmological correlators, namely the non-Gaussianity of the cosmic microwave background. Supersymmetry is used as a guide to introduce the contribution of fermionic higher spin particles, which have been neglected thus far in the literature. This necessarily introduces more than just a single additional fermionic superpartner, since the spectrum of massive, higher spin super- multiplets includes two propagating higher spin bosons and two propagating higher spin fermions, which all contribute to the three point function. As an example we consider the half-integer superspin Y = s + 1/2 supermultiplet, which includes particles of spin values j = s + 1, j = s + 1/2, j = s + 1/2 and j = s. We compute the curvature perturbation 3-point function for higher spin particle exchange and find that the known Ps(cos θ) angu- lar dependence is accompanied by superpartner contributions that scale as P s+1(cos θ) and $$ {\sum}_m{P}_s^m\left(\cos \theta \right) $$ m P s m cos θ , with P s and $$ {P}_s^m $$ P s m defined as the Legendre and Associated Legendre polynomials respectively. We also compute the tensor-scalar-scalar 3-point function, and find a complicated angular dependence as an integral over products of Legendre and associated Legendre polynomials.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fingerprints of a non-inflationary universe from massive fields;Journal of Cosmology and Astroparticle Physics;2024-09-01

2. Searching for cosmological collider in the Planck CMB data;Journal of Cosmology and Astroparticle Physics;2024-09-01

3. Unconventional conformal invariance of maximal depth partially massless fields on dS4 and its relation to complex partially massless SUSY;Journal of High Energy Physics;2024-08-20

4. Snowmass white paper: The cosmological bootstrap;SciPost Physics Community Reports;2024-07-23

5. An effective cosmological collider;Journal of High Energy Physics;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3