Abstract
Abstract
We derive a general formula of the tensor network representation for d-dimensional lattice fermions with ultra-local interactions, including Wilson fermions, staggered fermions, and domain-wall fermions. The Grassmann tensor is concretely defined with auxiliary Grassmann variables that play a role in bond degrees of freedom. Compared to previous works, our formula does not refer to the details of lattice fermions and is derived by using the singular value decomposition for the given Dirac matrix without any ad-hoc treatment for each fermion. We numerically test our formula for free Wilson and staggered fermions and find that it properly works for them. We also find that Wilson fermions show better performance than staggered fermions in the tensor renormalization group approach, unlike the Monte Carlo method.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference19 articles.
1. M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical lattice models, Phys. Rev. Lett. 99 (2007) 120601 [cond-mat/0611687] [INSPIRE].
2. Z.-C. Gu, F. Verstraete and X.-G. Wen, Grassmann tensor network states and its renormalization for strongly correlated fermionic and bosonic states, arXiv:1004.2563 [INSPIRE].
3. Z.-C. Gu, Efficient simulation of Grassmann tensor product states, Phys. Rev. B 88 (2013) 115139 [arXiv:1109.4470] [INSPIRE].
4. Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].
5. Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D 90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献