DNA barcoding to assess species identification in museum samples of Amphiliidae and natural samples of Cichlidae from Southern Mozambique

Author:

Ferrari ClaudioORCID,Tovela Erica,Taviani ElisaORCID,Nonnis Marzano FrancescoORCID

Abstract

AbstractThe biodiversity protection and monitorning is one of main goals of natural history musems worldwide. Conservation issues are particularly important for freshwater fish which are one of the most threatened taxa for the consequences of climate change and human activies. In Mozambique freshwater rivers are poorly explored and the impact of aquaculture and human activities on local biodiversity in almost unknown. Here we propose the barcoding analysis of cytochrome c oxidase I (COI) mitochrondrial DNA of 41 frehswater fishes catched in four rivers of southern Mozambique and 53 from a museum collection. As evidence of previous knowledge gaps, barcoding results revealed twenty new haplotypes described for the first time in the taxa Cichlidae and Amphilidae. From a methodological point of view, the barcoding approach demonstrated a critical point connected to the requested 650 bp length of amplified sequences. In fact, high weight genomic DNA is unattainable from museum samples and also in wildlife samples collected in pristine rivers. For this reason we furtherly tested the efficiency of DNA mini-barcoding analysis for 53 fish from a museum collection. The Mini-barcode method retrieved 56.6% of sequences successfully analyzed versus 3% of barcoding. The high performance of this thecniques is discussed in relation to biodiversity monitoring and to fill the taxonomy gaps in museum collections.

Funder

Italian Agency for Cooperation Development AICS

Università degli Studi di Parma

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3