Earth’s gravity from space

Author:

Rummel Reiner

Abstract

AbstractSatellite gravimetry began with the launch of the satellites Sputnik 1 and 2 in 1957. During the following 43 years, more and more details were discovered and the models of the Earth’s gravity could be refined. Methods improved and more and more satellite orbits and ground stations were added in the analysis, employing more advanced and precise measuring techniques. A new era started with the dedicated gravimetry missions CHAMP (2000–2010), GRACE (2002–2017), and GOCE (2009–2013). The methods of satellite-to-satellite tracking and satellite gradiometry resulted in a substantial improvement of our knowledge of the Earth’s gravity field in terms of accuracy and its spatial and temporal variations. There are three basic ways of using gravity and geoid models in Earth sciences and geodesy. First, in solid Earth physics, the highs and lows of the field are investigated in comparison with an idealized Earth, e.g., a hydrostatic equilibrium figure. In particular, in South America, Africa, Himalaya and Antarctica the gravity field is known much better now, due to GOCE and lead to an improved understanding of the continental crust and lithosphere. Second, in oceanography, the geoid serves as surface in equilibrium, a hypothetical ocean at rest. The ocean topography is the deviation of the actual ocean surface, measured by satellite altimetry, from this reference. The ocean topography serves as a new and independent input to ocean circulation modeling and leads to an improved understanding of ocean transport of mass, heat, and nutrients. Similarly, geodetic heights of the land surface will soon be referred to the geoid, leading to globally consistent heights and enabling the removal of existent systematic deformations and offsets of national and continental height systems. Third, the GRACE time series of monthly gravity models, reflecting seasonal, inter-annual and long-term gravity changes, became one of the most valuable data sources of climate change studies.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

Reference94 articles.

1. Abend S, Gebbe M, Gersemann M, Ahlers H, Müntinga H, Giese E, Gaaloul N, Schubert C, Lämmerzahl C, Ertmer W, Schleich WP, Rasel EM (2016) Atom-chip fountain gravimeter. PRL 117:203003

2. Albertella A, Rummel R (2014) GOCE geoid, mean dynamic ocean topography and geostrophic velocities. Centre of Geodetic Earth System Research Report 6, Munich

3. Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190:922–930. https://doi.org/10.1111/j.1365-246X.2012.05531-x

4. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85(457–473):2011. https://doi.org/10.1007/s00190-011-0444-4

5. Altamimi Z, Rebischung P, Métivier L, Collilieux X (2017) Analysis and results of ITRF2014, International Earth Rotation and Reference Systems Service (IERS) Technical Note 38. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt/M

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3