The gravimetric contribution to the Moho estimation in the presence of vertical density variations

Author:

Reguzzoni MirkoORCID,Sampietro DanieleORCID,Rossi LorenzoORCID

Abstract

AbstractThe Moho surface, namely the density discontinuity between crust and mantle, is traditionally studied by seismic methods. However, gravity information can contribute to the Moho estimation and, more generally, to the crustal modeling. The contribution is twofold. First, gravimetry generally provides observations with much lower errors than those implied by the mass density uncertainty and other geophysical assumptions. This means that it can be used to validate existing Moho and/or crustal models by forward modeling. Second, gravity inversion is able to provide diffused (not localized) information on the mass distribution, both regionally and globally (thanks to dedicated satellite gravity missions). However, this information is weak due to its intrinsic ill-posedness. This means that it can be used to correct and spatially interpolate existing models, and to complement seismic, magnetic and geological information to create new models. In this work, the problem of estimating the Moho surface by gravity inversion assuming a two-layer model with lateral and vertical density variations is treated at a regional level. The approach consists in linearizing the forward modeling around a reference Moho at a constant depth and then inverting it through a Wiener filter. This is standard in case of two layers with homogeneous density distributions (or with lateral density variations), while it requires some additional considerations and algorithm modifications in case of vertical density variations. The basic idea is to “condensate” the masses inside the Moho undulation on the reference surface used for the linearization, thus requiring the setup of an iterative procedure. A strategy to introduce seismic information into this inversion procedure is proposed too, with the aim of improving the a priori density modeling. A closed loop test is presented for the algorithm assessment, showing the improvement with respect to a standard approach and the capability of the proposed algorithm to reconstruct the originally simulated Moho undulation by also fitting the gravity and seismic data at a level that is consistent with their observation noise.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Environmental Science

Reference40 articles.

1. Barzaghi R, Biagi L (2014) The collocation approach to Moho estimate. Ann Geophys 57(1):S0190

2. Barzaghi R, Sansò F (1988) Remarks on the inverse gravimetric problem. Geophys J Roy Astron Soc 92:505–511

3. Barzaghi A, Gandino A, Sansò F, Zenucchini C (1992) The collocation approach to the inversion of gravity data. Geophys Prospect 40(4):429–451

4. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. Eos Trans Am Geophys Union 81(48):F897

5. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3