Feedback structure of cliff and shore platform morphodynamics

Author:

Payo Andres,Hall Jim W.,Dickson Mark E.,Walkden Mike J. A.

Abstract

Abstract It has been suggested that studies of geomorphological systems should identify potential system feedbacks, determine their direction of influence, and assess their relative importance. In this paper we show how a core set of processes and feedback loops can be distilled from existing literature on rock coast morphodynamics. The structure has been represented using Causal Loop Diagrams and a methodology to estimate the strength of a single feedback loop is presented. The backwearing erosion rate (cliff horizontal erosion) has been found to be controlled by at least four feedback loops; three balancing (cliff toe wave energy depletion, ground-water pore pressure diminution and cliff deposit protection) and one positive loop (abrasion enhancement). The downwearing erosion rate (vertical erosion) has been found to be controlled by at least three balancing feedback loops (weathering limited, shear depletion, cover-protection). Mean sea level directly influences the downwearing rate, through the water depth relative to the wave base, and indirectly influences the backwearing erosion rate through the wave energy dissipation that determines the amount of energy reaching the cliff toe. The offshore wave non-linearity parameter is proposed to capture the complex interaction between waves and shore platform geometries. The strength of the cliff toe energy depletion loop is assessed by reasoning on its causal pathway and found to be O(−10−10 to −10−4) for poorly lithified rock coasts. By understanding how the individual and overall feedback strengths are influenced by different future environmental and human intervention scenarios we could provide better assessment at the time scales needed for coastal management.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ecology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3