Author:
Deng Ze,Chen Dan,Hu Yangyang,Wu Xiaoming,Peng Weizhou,Li Xiaoli
Abstract
Abstract
Morlet continuous wavelet transform (MCWT) has been widely used to process non-stationary electro-encephalogram (EEG) data. Nowadays, the MCWT application for processing EEG data is time-sensitive and data-intensive due to quickly increasing problem domain sizes and advancing experimental techniques. In this paper, we proposed a massively parallel MCWT approach based on GPGPU to address this research challenge. The proposed approach treats MCWT as four main computing sub-procedures and parallelizes them with CUDA correspondingly. We focused on optimizing FFT on GPUs to improve the performance of MCWT. Extensive experiments have been carried out on Fermi and Kepler GPUs and a Fermi GPU cluster. The results indicate that (1) the proposed approach (especially on Kepler GPU) can ensure encouraging runtime performance of processing non-stationary EEG data in contrast to CPU-based MCWT, (2) the performance can further be improved on the GPU cluster but performance bottleneck exists when running multiple GPGPUs on one node, and (3) tuning an appropriate FFT radix is important to the performance of our MCWT.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications
Reference32 articles.
1. NVIDIA Corporation. Nvidia next generation cuda compute architecture: Fermi (2009)
2. NVIDIA Corporation. Whitepaper NVIDIA GeForce GTX 680 (2012)
3. NVIDIA CUDA C programming guide version 4.2 (2012)
4. Akhtar MT, Mitsuhashi W, James CJ (2012) Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Signal Process 92(2):401–416
5. Boashash B (2003) Time frequency signal analysis and processing: a comprehensive reference
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献