Sizing multi-tier systems with temporal dependence: benchmarks and analytic models

Author:

Mi Ningfang,Casale Giuliano,Cherkasova Ludmila,Smirni Evgenia

Abstract

Abstract Temporal dependence, as a synonym for burstiness, is often found in workloads (i.e., arrival flows and/or service times) in enterprise systems that use the multi-tier paradigm. Despite the fact that burstiness has deleterious effects on performance, existing modeling and benchmarking techniques do not provide an effective capacity planning for multi-tier systems with temporal dependence. In this paper, we first present strong evidence that existing models cannot capture bursty conditions and accurately predict performance. Therefore, we propose a simple and effective sizing methodology to integrate workload burstiness into models and benchmarking tools used in system sizing. This modeling methodology is based on the index of dispersion which jointly captures variability and burstiness of the service process in a single number. We report experimentation on a real testbed that validates the accuracy of our modeling technique by showing that experimental and model prediction results are in excellent agreement under both bursty and non-bursty workloads. To further support the capacity planning process under burstiness, we propose an enhanced benchmarking technique that can emulate workload burstiness in systems. We find that most existing benchmarks, like the standard TPC-W benchmark, are designed to assess system performance only under non-bursty conditions. In this work, we rectify this deficiency by introducing a new module into existing benchmarks, which allows to inject burstiness into the arrival stream in a controllable and reproducible manner by using the index of dispersion as a single turnable knob. This approach enables a better understanding of system performance degradation due to burstiness and makes a strong case for the usefulness of the proposed benchmark enhancement for capacity planning of enterprise systems.

Publisher

Sociedade Brasileira de Computacao - SB

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3