A reconfigurable component model with semantic type system for dynamic WSN applications

Author:

Thoelen Klaas,Hughes Danny,Matthys Nelson,Fang Lei,Dobson Simon,Qiang Yizhou,Bai Wei,Man Ka Lok,Guan Sheng-Uei,Preuveneers Davy,Michiels Sam,Huygens Christophe,Joosen Wouter

Abstract

Abstract Runtime reconfigurable component models provide several attractions with regard to the management of wireless sensor network (WSN) applications operating in dynamic environments and under evolving application requirements. One such attraction is the runtime discovery of suitable components for reuse in changing application compositions. Syntactic interface typing, provided by contemporary component models, however only supports exact interface matching. This causes limited reuse of components and complicates management of WSN applications. We argue that more flexibility is required to efficiently manage the complex, large-scale and dynamic WSN deployments of the future. In this paper, we describe the addition of semantic service descriptions to component interfaces to support compatibility and subtype testing. This allows rich discovery and reuse of third-party functionality and reasoning at the level of equivalent service types. We report on the incorporation of these semantic interface definitions in the Loosely Coupled Component Infrastructure (LooCI). Evaluation thereof shows that the scheme imposes minimal computational and memory overhead, while significantly reducing the complexity and cost of reconfiguration.

Publisher

Sociedade Brasileira de Computacao - SB

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecting reconfigurable publish/subscribe applications for wireless sensor networks;International Journal of Sensor Networks;2015

2. A Semantic-Based Routing Algorithm for Hierarchical WSNs;Applied Mechanics and Materials;2014-06

3. Types in Their Prime: Sub-typing of Data in Resource Constrained Environments;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3