Estimation of exogenous drivers to predict COVID-19 pandemic using a method from nonlinear control theory

Author:

Hametner Christoph,Kozek Martin,Böhler Lukas,Wasserburger Alexander,Du Zhang Peng,Kölbl Robert,Bergmann Michael,Bachleitner-Hofmann Thomas,Jakubek Stefan

Abstract

AbstractThe currently ongoing COVID-19 pandemic confronts governments and their health systems with great challenges for disease management. Epidemiological models play a crucial role, thereby assisting policymakers to predict the future course of infections and hospitalizations. One difficulty with current models is the existence of exogenous and unmeasurable variables and their significant effect on the infection dynamics. In this paper, we show how a method from nonlinear control theory can complement common compartmental epidemiological models. As a result, one can estimate and predict these exogenous variables requiring the reported infection cases as the only data source. The method allows to investigate how the estimates of exogenous variables are influenced by non-pharmaceutical interventions and how imminent epidemic waves could already be predicted at an early stage. In this way, the concept can serve as an “epidemometer” and guide the optimal timing of interventions. Analyses of the COVID-19 epidemic in various countries demonstrate the feasibility and potential of the proposed approach. The generic character of the method allows for straightforward extension to different epidemiological models.

Funder

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference59 articles.

1. Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Histoire de l’Acad. R. Sci.(Paris) avec Mem, 1–45 (1760)

2. Hays, J.N.: Epidemics and Pandemics: Their Impacts on Human History. Abc-clio (2005)

3. Rhodes, T., Lancaster, K., Lees, S., Parker, M.: Modelling the pandemic: attuning models to their contexts. BMJ Global Health 5(6),(2020)

4. Brauer, F., Driessche, P.V., Wu, J.: Lecture Notes Math. Epidemiol. Springer, Berlin (2008)

5. Eker, S.: Validity and usefulness of COVID-19 models. Human. Soc. Sci. Commun. 7(1), 1–5 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3