Optical soliton stability in zig-zag optical lattices: comparative analysis through two analytical techniques and phase portraits

Author:

Riaz Muhammad Bilal,Jhangeer Adil,Kazmi Syeda Sarwat

Abstract

AbstractThis article explores the examination of the widely employed zig-zag optical lattice model for cold bosonic atoms, which is commonly utilized to depict nonlinear wave in fluid mechanics and plasma physics. The focus is on obtaining soliton solutions in optics and investigating their physical properties. A wave transformation is initially applied to convert a partial differential equation (PDE) into an ordinary differential equation (ODE). Soliton solutions are subsequently obtained through the application of two distinct methods, namely the generalized logistic equation method and the Sardar sub-equation method. These solutions include bright, dark, combined dark-bright, chirped type solitons, bell-shaped, periodic, W-shape, and kink solitons. In this paper, the solutions derived from two analytical approaches were compared to enhance the understanding of the behavior of the discussed nonlinear model. The obtained solutions have significant implications across various fields such as plasma physics, fluid dynamics, optics, and communication technology. Furthermore, 3D and 2D graphs are generated to depict the physical phenomena of the derived solutions by assigning appropriate constant parameters. The qualitative evaluation of the undisturbed planar system involves the analysis of phase portraits within bifurcation theory. Subsequently, the introduction of an outward force is carried out to induce disruption, and chaotic phenomena are unveiled. The detection of chaotic trajectory in the perturbed system is achieved through 3D plots, 2D plots, time scale plots, and Lyapunov exponents. Furthermore, stability analysis of the examined model is addressed under distinct initial conditions. Finally, the sensitivity assessment of the model under consideration is carried out using the Runge–Kutta method. The results of this study are innovative and have not been previously investigated for the system under consideration. The results obtained underscore the reliability, simplicity, and effectiveness of these techniques in analyzing a variety of nonlinear models found in mathematical physics and engineering disciplines.

Funder

Technical University of Ostrava

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3