Inferring the fractional nature of Wu Baleanu trajectories

Author:

Conejero J. AlbertoORCID,Garibo-i-Orts ÒscarORCID,Lizama CarlosORCID

Abstract

AbstractWe infer the parameters of fractional discrete Wu Baleanu time series by using machine learning architectures based on recurrent neural networks. Our results shed light on how clearly one can determine that a given trajectory comes from a specific fractional discrete dynamical system by estimating the fractional exponent and the growth parameter $$\mu $$ μ . With this example, we also show how machine learning methods can be incorporated into the study of fractional dynamical systems.

Funder

Ministerio de Ciencia e Innovación

Universitat Politècnica de València

FONDECYT

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive deep learning models for analyzing discrete fractional dynamics from noisy and incomplete data;Chinese Journal of Physics;2024-06

2. A new paradigm in the logistic and similar maps: time stepping schemes;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3