Structural and electrical dynamics of a grating-patterned triboelectric energy harvester with stick–slip oscillation and magnetic bistability

Author:

Zhao Huai,Ouyang HuajiangORCID

Abstract

AbstractThe majority of research work on triboelectric energy harvesting is on material science, manufacturing and electric circuit design. There is a lack of in-depth research into structural dynamics which is crucial for power generation in triboelectric energy harvesting. In this paper, a novel triboelectric energy harvester with a compact structure working in sliding mode is developed, which is in the form of a casing and an oscillator inside. Unlike most sliding-mode harvesters using single-unit films, the proposed harvester utilizes grating-patterned films which are much more efficient. A bistable mechanism consisting of two pairs of magnets is employed for broadening the frequency bandwidth. A theoretical model is established for the harvester, which couples the structural dynamics domain and electrical dynamics domain. This paper presents the first study about the nonlinear structural dynamics of a triboelectric energy harvester with grating-patterned films, which is also the first triboelectric energy harvester integrating grating-patterned films with a bistable magnetic system for power performance enhancement. Theoretical studies are carried out from the perspectives of both structural and electrical dynamics. Surface charge density and segment configuration of the films affect whether the electrostatic force influences the structural dynamics, which can be neglected under a low surface charge density. Differences in structural response and electrical output are found between a velocity-dependent model and Coulomb’s model for modelling the friction in the triboelectric energy harvesting system. The bistable mechanism can effectively improve the output voltage under low-frequency excitations. Additionally, the output voltage can also be obviously enhanced through increasing the number of the hollowed-out units of the grating-patterned films, which also results in a slight decrease in the optimal load resistance of the harvester. These findings enable innovative designs for triboelectric energy harvesters and provide fabrication guidelines in practical applications.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3