An improved methodology to restrict the range of motion of mechanical joints

Author:

Rodrigues da Silva MarianaORCID,Marques FilipeORCID,Tavares da Silva MiguelORCID,Flores PauloORCID

Abstract

AbstractJoints with rotational degrees of freedom, for instance, revolute, spherical, or universal joints, are commonly utilized in real-world scenarios. In the multibody systems methodology, mechanical joints usually are formulated as classical kinematic constraints such that there is no restriction of the range of motion (RoM) of the joint. Thus, the formulation must include additional restrictions to prevent the joints from performing unacceptable movements and to avoid unrealistic configurations of the connected bodies. Therefore, the aim of this work is to propose a methodology to restrict the RoM of mechanical joints. Joint resistance moments are applied to the bodies connected by the joint to mimic the dissipative behavior of the materials constituent of joints and to prevent unacceptable configurations of those bodies. The proposed methodology aims to extend and improve a previously published study, specifically in the definition of the RoM limits, calculation of the penalty moments, and establishment of their direction of application. Enhanced methods to deal with the detection of unacceptable joint configurations, namely the elliptical and polynomial approaches, are proposed. A parametrization procedure is described to correctly calculate the direction of the penalty moments to apply to the connected bodies. The methodology is investigated in the dynamic modeling and simulation of one demonstrative example of application, namely a simple pendulum. A parametric analysis is performed to assess the influence of the methodology parameters in the response of the model. The methodology allows the correct restriction of the RoM of joints, while preserving the mechanical energy of the system.

Funder

Fundação para a Ciência e a Tecnologia

Universidade do Minho

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3