Chaos in impact oscillators not in vain: Dynamics of new mass excited oscillator

Author:

Costa Dimitri,Vaziri Vahid,Kapitaniak Marcin,Kovacs Stephane,Pavlovskaia Ekaterina,Savi Marcelo A.,Wiercigroch Marian

Abstract

AbstractThis work explores complex dynamics of a new mass excited impact oscillator reported in Wiercigroch et al. (Nonlinear Dyn 99:323–339, 2020) both experimentally and numerically in the context of development of chaos theory and its applications. The parameters of the rig were characterised and are presented in the paper. To improve quality of the recorded phase portraits, a new technique for processing of the experimental data allowing to reduce the influence of noise and to obtain clear orbits especially for higher periods is proposed. A comparison with the previous studies on the base excited impact oscillator confirms that the rig is much more accurate as well as it has capability to generate a wide range of excitation patterns. It is demonstrated that a precise control of the excitation is achieved by changing the coil current. It is also shown that the rig is able to capture co-existent attractors and multi-stability by reproducing various predicted numerical responses, which has not been possible before. The results obtained using a simple impact oscillator model are in a good agreement with the experimental results, which indicates that the rig can be used for further fundamental studies of impact phenomena including grazing. It can also serve as a tool to study nonlinear control including bifurcation control and control of co-existing orbits.

Funder

CAPES

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micromechanical vibro-impact systems: a review;Journal of Micromechanics and Microengineering;2023-08-08

2. Marching bifurcations;International Journal of Mechanical Sciences;2023-07

3. Constrained Control of Coexisting Attractors in Impact Oscillator with Delay;Journal of Vibration Engineering & Technologies;2023-06-22

4. 非光滑准零刚度隔振器实验研究;Acta Mechanica Sinica;2023-04-23

5. Pipe vibration attenuation through internal damping and optimal design of vibro-impact systems;Scientific Reports;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3