Non-trivial solutions and their stability in a two-degree-of-freedom Mathieu–Duffing system

Author:

Barakat Ahmed A.ORCID,Weig Eva M.,Hagedorn Peter

Abstract

AbstractThe Mathieu–Duffing equation represents a basic form for a parametrically excited system with cubic nonlinearities. In multi-degree-of-freedom systems, parametric resonances and the associated limit cycles take place at both principal and combination resonance frequencies. Furthermore, using asynchronous parametric excitation of coupling terms leads to a broadband destabilization of the trivial solution and the appearance of limit cycles at non-resonant frequencies. Regarding applications, the utilization of this excitation method has its significant importance in micro- and nanosystems. On the one hand, cubic nonlinearities are found to be abundant in these systems. On the other hand, parametric excitation is preferably utilized in these systems for better amplification leading to an enhanced sensitivity and for squeezing thermal noise, and thus, proved to be significantly useful in mechanical, optical and microwave systems. Therefore, this theoretical investigation should be of relevant importance to those small-scaled systems. Accordingly, a general two-degree-of-freedom Mathieu–Duffing system is studied. The non-trivial solutions are obtained at different parametric resonance conditions. A bifurcation analysis is carried out using the multiple scales method, followed by investigating the effect of the asynchronous parametric excitation on the existence of limit cycles at resonant and non-resonant frequencies.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3