Geometric slow–fast analysis of a hybrid pituitary cell model with stochastic ion channel dynamics

Author:

Montefusco Francesco,Pedersen Morten GramORCID

Abstract

AbstractTo obtain explicit understanding of the behavior of dynamical systems, geometrical methods and slow–fast analysis have proved to be highly useful. Such methods are standard for smooth dynamical systems and increasingly used for continuous, non-smooth dynamical systems. However, they are much less used for random dynamical systems, in particular for hybrid models with discrete, random dynamics. Here we propose a geometrical method that works directly with the hybrid system. We illustrate our approach through an application to a hybrid pituitary cell model in which the stochastic dynamics of very few active large-conductance potassium (BK) channels is coupled to a deterministic model of the other ion channels and calcium dynamics. To employ our geometric approach, we exploit the slow–fast structure of the model. The random fast subsystem is analyzed by considering discrete phase planes, corresponding to the discrete number of open BK channels, and stochastic events correspond to jumps between these planes. The evolution within each plane can be understood from nullclines and limit cycles, and the overall dynamics, e.g., whether the model produces a spike or a burst, is determined by the location at which the system jumps from one plane to another. Our approach is generally applicable to other scenarios to study discrete random dynamical systems defined by hybrid stochastic–deterministic models.

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3