Bifurcations in an economic growth model with a distributed time delay transformed to ODE

Author:

Guerrini Luca,Krawiec AdamORCID,Szydłowski MarekORCID

Abstract

AbstractIn this paper, we consider a model of economic growth with a distributed time-delay investment function, where the time-delay parameter is a mean time delay of the gamma distribution. Using the linear chain trick technique, we transform the delay differential equation system into an equivalent one of ordinary differential equations (ODEs). Since we are dealing with weak and strong kernels, our system will be reduced to a three- and four-dimensional ODE system, respectively. The occurrence of Hopf bifurcation is investigated with respect to the following two parameters: time-delay parameter and rate of growth parameter. Sufficient criteria on the existence and stability of a limit cycle solution through the Hopf bifurcation are presented in case of time-delay parameter. Numerical studies with the Dana and Malgrange investment function show the emergence of two Hopf bifurcations with respect to the rate growth parameter. In this case, we have been able to detect the existence of stable long-period cycles in the economy. According to the time-delay and adjustment speed parameters, the range of admissible values of the rate of growth parameter breaks down into three intervals. First, we have stable focus, then the limit cycle and finally again the stable solution with two Hopf bifurcations. Such behavior appears for some middle interval of the admissible range of values of the rate of growth parameter.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3