Empirical mode modeling

Author:

Park JosephORCID,Pao Gerald M.,Sugihara George,Stabenau Erik,Lorimer Thomas

Abstract

AbstractData-driven, model-free analytics are natural choices for discovery and forecasting of complex, nonlinear systems. Methods that operate in the system state-space require either an explicit multidimensional state-space, or, one approximated from available observations. Since observational data are frequently sampled with noise, it is possible that noise can corrupt the state-space representation degrading analytical performance. Here, we evaluate the synthesis of empirical mode decomposition with empirical dynamic modeling, which we term empirical mode modeling, to increase the information content of state-space representations in the presence of noise. Evaluation of a mathematical, and, an ecologically important geophysical application across three different state-space representations suggests that empirical mode modeling may be a useful technique for data-driven, model-free, state-space analysis in the presence of noise.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference33 articles.

1. Anderson, P.W.: More is different. Science 177(4047), 393–396 (1972). https://doi.org/10.1126/science.177.4047.393

2. See for example: Chaos: An Interdisciplinary Journal of Nonlinear Science, American Institute of Physics (AIP), ISSN 1054-1500, 1089-7682. https://aip.scitation.org/journal/cha; Complex Systems, Complex Systems Publications, Inc., ISSN 0891-2513. https://www.complex-systems.com/; Physical Review E, American Physical Society, ISSN 2470-0045, 2470-0053 https://journals.aps.org/pre/

3. DeAngelis, D.L., Yurek, S.: Equation-free modeling unravels the behavior of complex ecological systems. PNAS 112(13), 3856–3857 (2015). https://doi.org/10.1073/pnas.1503154112

4. Lin, B., He, X., Ye, J.: A geometric viewpoint of manifold learning. Appl. Inf. 2, 3 (2015). https://doi.org/10.1186/s40535-015-0006-6

5. Coifman, R., Stéphane, L.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006). https://doi.org/10.1016/j.acha.2006.04.006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3