Effect of mass distribution on curving performance for a loaded wagon

Author:

Zhang Duo,Tang Yinying,Peng Qiyuan,Dong Chunjiao,Ye YunguangORCID

Abstract

AbstractThe location of wagon gravity center for a loaded wagon is underestimated in a vehicle–track coupled system. The asymmetric wheel load distribution due to loading offset significantly affects the wheel-rail contact state and seriously deteriorates the curving performance in conjunction with the height of gravity center and cant deficiency. Optimizing the location of gravity center and cruising velocity, therefore, is of interest to prevent the derailment and promote the transport capacity of railway wagons. This study aims to reveal the three-dimensional influencing mechanism of mass distribution on vehicle curving performance under different velocities. The wheel unloading ratio is regarded as the evaluation index. A simplified quasi-static model is established considering essential assumptions to highlight the influence of lateral and vertical offset on curving performance. For a more accurate description, the MBS models with various locations of wagon gravity center are built and then negotiate curves in different simulation cases. The simulation results reveal that the distribution of wheel unloading ratio determined by loading offset is like contour lines of ‘basin’. Based on the conclusions of quasi-static analysis and dynamics simulations, the regression equation is proposed and the fitting parameters are calculated for each simulation case. This paper demonstrates the necessity of optimizing the location of wagon gravity center according to the running condition and offers a novel strategy to load and transport the cargo by railway wagons.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3