Abstract
AbstractThe aeroelastic behavior of a planar prismatic visco-elastic structure, subject to a turbulent wind, flowing orthogonally to its plane, is studied in the nonlinear field. The steady component of wind is responsible for a Hopf bifurcation occurring at a threshold critical value; the turbulent component, which is assumed to be a small harmonic perturbation of the former, is responsible for parametric excitation. The interaction between the two bifurcations is studied in a three-dimensional parameter space, made of the two wind amplitudes and the frequency of the turbulence. Aeroelastic forces are computed by the quasi-static theory. A one-D.O.F dynamical system, drawn by a Galerkin projection of the continuous model, is adopted. The multiple scale method is applied, to get a two-dimensional bifurcation equation. A linear stability analysis is carried out to determine the loci of periodic and quasi-periodic bifurcations. Limit cycles and tori are computed by exact, asymptotic, and numerical solutions of the bifurcation equations. Numerical results are obtained for a sample structure, and compared with finite-difference solutions of the original partial differential equation of motion.
Funder
Università degli Studi dell’Aquila
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Reference57 articles.
1. Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3(6), 465–490 (1992)
2. Luongo, A., Paolone, A., Piccardo, G.: Postcritical behavior of cables undergoing two simultaneous galloping modes. Meccanica 33(3), 229–242 (1998)
3. Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14(1–2), 135–157 (2008)
4. Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315(3), 375–393 (2008)
5. Luongo, A., Zulli, D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67(1), 71–87 (2012)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献