1. Anacleto, M., Vidal, C.: Dynamics of a delayed predator-prey model with allee effect and holling type II functional response. Math. Methods Appl. Sci. 43(9), 5708–5728 (2020). https://doi.org/10.1002/mma.6307
2. Arditi, R., Abillon, J.M., da Silva, J.V.: The effect of a time-delay in a predator-prey model. Math. Biosci. 33(1–2), 107–120 (1977). https://doi.org/10.1016/0025-5564(77)90066-9
3. Atay, F.M.: Van der pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998). https://doi.org/10.1006/jsvi.1998.1843
4. Bellman, R., Cook, K.L.: Mathematics in science and engineering. A series of Monographs and Textbooks. Differential-Difference Equations, vol. 6, 1st edn. Academic Press Inc (1963). https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/6/suppl/C
5. Bender, C.M., Orszag, S.A.: Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media (2013)