A novel 3D train–bridge interaction model for monorail system considering nonlinear wheel-track slipping behavior

Author:

Yang Yun,He Qinglie,Cai Chengbiao,Zhu Shengyang,Zhai Wanming

Abstract

AbstractVariable speed operation of the train cause easily the wheel-track slipping phenomenon, inducing strong nonlinear dynamic behavior of the suspended monorail train and bridge system (SMTBS), especially under an insufficient wheel-track friction coefficient. To investigate the coupled vibration features of the SMTBS under variable speed conditions, a novel 3D train–bridge interaction model for the monorail system considering nonlinear wheel-track slipping behavior is developed. Firstly, based on the D’Alembert principle, the vibration equations of the vehicle subsystem are derived by adequately considering the nonlinear interactive behavior among the vehicle components. Then, a high-efficiency modeling method for the large-scale bridge subsystem is proposed based on the component mode synthesis (CMS) method. The vehicle and bridge subsystems are coupled with a spatial wheel-track interaction model considering the nonlinear wheel-track sliding behavior. Furtherly, by a comprehensive comparison with the field test data, the effectiveness of the proposed method is verified, as well as the reasonable modal truncation frequencies of the bridge subsystem are determined. On this basis, the dynamics performances of the SMTBS are evaluated under different initial braking speeds and wheel-track interfacial adhesion conditions; besides, the nonlinear wheel-track slipping characteristics and their influences on the vehicle–bridge interaction are also revealed. The analysis results indicate that the proposed model is reliable for investigating the time-varying dynamic features of SMTBS under variable train speeds. Both the axle load transfer phenomenon and longitudinal slip of the driving tire would be easy to appear under the braking condition, which would significantly increase the longitudinal vehicle–bridge dynamic responses. To ensure a good vehicle–bridge dynamics performance, it is suggested that the wheel-track interfacial friction coefficient is larger than 0.35.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3