1. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)
2. Ding, F., Yang, H.Z., Liu, F.: Performance analysis of stochastic gradient algorithms under weak conditions. Sci. China Ser. F: Inf. Sci. 51, 1269–1280 (2008)
3. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)
4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
5. Moulines, E., Bach, F.R.:Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In: Advances in Neural Information Processing Systems, pp. 451–459 (2011)