Hysteretic behaviour of uniaxially thermoformed auxetic foams under 3-point bending low-frequency vibration

Author:

Zhang Qicheng,Yu Xindi,Scarpa FabrizioORCID,Barton David,Xia Yuying,Shaw Alexander,Zhu Yunpeng,Lang Zi-Qiang

Abstract

AbstractThe work describes experiments and models related to auxetic (negative Poisson’s ratio) foams subjected to low-frequency and variable amplitude 3-point bending loading. A custom 3-point bending vibration test rig is designed and used to perform the dynamic test of auxetic PU foam beams within low-frequency range (1–20 Hz) and 5 different displacement amplitudes. The auxetic foams tested in this work are manufactured using a simplified and relatively low-cost uniaxially thermoforming compression technique, which leads to the production of foams with transverse isotropic characteristics. Auxetic foam beam samples with two different cutting orientations and different thermoforming compression ratios rc (20–80%) are tested and compared, also with the use of theoretical Euler–Bernoulli-based and finite element models. The dynamic modulus of the foams increases with rc, ranging between 0.5 and 5 MPa, while the dynamic loss factor is marginally affected by the compression ratio, with overall values between 0.2 and 0.3. The auxetic PU foam has a noticeable amplitude-dependent stiffness and loss factors, while the dynamic modulus increases but slightly decreases with the frequency. The dynamic modulus is also 20–40% larger than the quasi-static one, while the dynamic and static loss factors are quite close. A modified Bouc–Wen model is also further developed to capture the amplitude and frequency-dependent properties of the conventional and auxetic foams with different volumetric compression ratios. The model shows a good agreement with the experimental results.

Funder

Engineering and Physical Sciences Research Council

Horizon 2020 Framework Programme

Swansea University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3