Recurrence-based reconstruction of dynamic pricing attractors

Author:

Lu ShuixiuORCID,Oberst Sebastian

Abstract

AbstractDynamic pricing depends on the understanding of uncertain demand. We ask the question whether a stochastic system is sufficient to model this uncertainty. We propose a novel paradigm based on statistical analysis of recurrence quantification measures. The paradigm fits nonlinear dynamics by simultaneously optimizing both the determinism and the trapping time in recurrence plots and identifies an optimal time delay embedding. We firstly apply the paradigm on well-known deterministic and stochastic systems including Duffing systems and multi-fractional Gaussian noise. We then apply the paradigm to optimize the sampling of empirical point process data from RideAustin, a company providing ride share service in the city of Austin, Texas, the USA, thus reconstructing a period-7 attractor. Results show that in deterministic systems, an optimal embedding exists under which recurrence plots exhibit robust diagonal or vertical lines. However, in stochastic systems, an optimal embedding often does not exist, evidenced by the inability to shrink the standard deviation of either the determinism or the trapping time. By means of surrogate testing, we also show that a Poisson process or a stochastic system with periodic trend is insufficient to model uncertainty contained in empirical data. By contrast, the period-7 attractor dominates and well models nonlinear dynamics of empirical data via irregularly switching of the slow and the fast dynamics. Findings highlight the importance of fitting and recreating nonlinear dynamics of data in modeling practical problems.

Funder

Australian Research Council through the Centre for Transforming Maintenance through Data Science

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3