Coupled nonlinear Schrödinger (CNLS) equations for two interacting electrostatic wavepackets in a non-Maxwellian fluid plasma model

Author:

Lazarides N.ORCID,Kourakis Ioannis

Abstract

AbstractThe nonlinear dynamics of two co-propagating electrostatic wavepackets in a one-dimensional non-magnetized plasma fluid model is considered, from first principles. The coupled waves are characterized by different (carrier) wavenumbers and amplitudes. A plasma consisting of non-thermalized ($$\kappa $$ κ -distributed) electrons evolving against a cold (stationary) ion background is considered. The original model is reduced, by means of a multiple-scale perturbation method, to a pair of coupled nonlinear Schrödinger (CNLS) equations for the dynamics of the wavepacket envelopes. For arbitrary wavenumbers, the resulting CNLS equations exhibit no known symmetry and thus intrinsically differ from the Manakov system, in general. Exact analytical expressions have been derived for the dispersion, self-modulation (nonlinearity) and cross-modulation (coupling) coefficients involved in the CNLS equations, as functions of the wavenumbers ($$k_1$$ k 1 , $$k_2$$ k 2 ) and of the spectral index $$\kappa $$ κ characterizing the electron profile. An analytical investigation has thus been carried out of the modulational instability (MI) properties of this pair of wavepackets, focusing on the role of the intrinsic (variable) parameters. Modulational instability is shown to occur in most parts of the parameter space. The instability window(s) and the corresponding growth rate are calculated numerically in a number of case studies. Two-wave interaction favors MI by extending its range of occurrence and by enhancing its growth rate. Growth rate patterns obtained for different $$\kappa $$ κ index (values) suggest that deviation from thermal (Maxwellian) equilibrium, for low $$\kappa $$ κ values, leads to enhance MI of the interacting wave pair. To the best of our knowledge, the dynamics of two co-propagating wavepackets in a plasma described by a fluid model with $$\kappa $$ κ -distributed electrons is investigated thoroughly with respect to their MI properties as a function of $$\kappa $$ κ for the first time, in the framework of an asymmetric CNLS system whose coefficients present no obvious symmetries for arbitrary $$k_1$$ k 1 and $$k_2$$ k 2 . Although we have focused on electrostatic wavepacket propagation in non-thermal (non-Maxwellian) plasma, the results of this study are generic and may be used as basis to model energy localization in nonlinear optics, in hydrodynamics or in dispersive media with Kerr-type nonlinearities where MI is relevant.

Funder

Khalifa University of Science, Technology and Research

KU Space and Planetary Science Center

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3