Abstract
AbstractThis paper aims to study the dynamics of the single-degree-of-freedom magnetic spring-based oscillator system. The proposed oscillator system contains a nonmagnetic shaft, a floating permanent magnet (PM), and two fixed permanent magnets (PMs). All PMs are placed in such a way that they can repel each other. At first, the proposed system's magnetic properties and magnetic restoring force are studied. Experimental and numerical analyses have been carried out to validate the analytical investigation of the magnetic restoring force. The linear and nonlinear coefficients of the oscillator system are analysed from the magnetic restoring force. Moreover, how the gravitational force affects the equilibrium position is studied by varying the height of the oscillator. The magnetic restoring forces for different oscillator heights are also analysed. In addition, the system dynamics, such as damping ratio, eigenvalues and natural frequencies of the oscillator system, are investigated with and without electromechanical coupling. Finally, the proposed system's energy generation capacity is examined using electromechanical coupling.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献