Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve

Author:

Schröders SimonORCID,Fidlin Alexander

Abstract

AbstractPressure vibrations in hydraulic systems are a widespread problem and can be caused by external excitation or self-exciting mechanisms. Although vibrations cannot be completely avoided in most cases, at least their frequencies must be known in order to prevent resonant excitation of adjacent components. While external excitation frequencies are known in most cases, the estimation of self-excited vibration amplitudes and frequencies is often difficult. Usually, numerical studies have to be executed in order to elaborate parameter influences, which is computationally expensive. The same holds true for the prediction of forced oscillation amplitudes. This contribution proposes asymptotic approximations of forced and self-excited oscillations in a simple hydraulic circuit consisting of a pump, an ideal consumer and a pressure control valve. Two excitation mechanisms of practical interest, namely pump pulsations (forced vibrations) and valve instability (self-excited vibrations), are analyzed. The system dynamics are described by a singularly perturbed third-order differential equation. By separating slow and fast variables in the system without external excitation, a first-order approximation of the slow manifold is computed. The flow on the slow manifold is approximated by an averaging procedure, whose piecewise defined zero-order solution maps the valve’s switching property. A modification of the procedure allows for the asymptotic approximation of the system’s forced response to an external excitation. The approximate solutions are validated within a realistic parameter range by comparison with numerical solutions of the full system equations.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3