Abstract
AbstractA mechanical system composed of two weakly coupled oscillators under harmonic excitation is considered. Its main part is a vibro-impact unit composed of a linear oscillator with an internally colliding small block. This block is coupled with the secondary part being a damped linear oscillator. The mathematical model of the system has been presented in a non-dimensional form. The analytical studies are restricted to the case of a periodic steady-state motion with two symmetric impacts per cycle near 1:1 resonance. The multiple scales method combined with the sawtooth-function-based modelling of the non-smooth dynamics is employed. A conception of the stability analysis of the periodic motions suited for this theoretical approach is presented. The frequency–response curves and force–response curves with stable and unstable branches are determined, and the interplay between various model parameters is investigated. The theoretical predictions related to the motion amplitude and the range of stability of the periodic steady-state response are verified via a series of numerical experiments and computation of Lyapunov exponents. Finally, the limitations and extensibility of the approach are discussed.
Funder
Ministerstwo Nauki i Szkolnictwa Wyzszego
Narodowe Centrum Nauki
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献