Regularised Volterra series models for modelling of nonlinear self-excited forces on bridge decks

Author:

Skyvulstad HenrikORCID,Petersen Øyvind W.,Argentini Tommaso,Zasso Alberto,Øiseth Ole

Abstract

AbstractVolterra series models are considered an attractive approach for modelling nonlinear aerodynamic forces for bridge decks since they extend the convolution integral to higher dimensions. Optimal identification of nonlinear systems is a challenging task since there are typically many unknown variables that need to be determined, and it is vital to avoid overfitting. Several methods exist for identifying Volterra kernels from experimental data, but a large class of them put restrictions on the system inputs, making them infeasible for section model tests of bridge decks. A least-squares identification method does not restrict the inputs, but the identified model often struggles with noisy (non-smooth) kernels, which is deemed to be unphysical and a sign of overfitting. In this work, regularised least-squares identification is introduced to improve the performance of model identification using least-squares. Standard Tikhonov regularisation and other penalty techniques that impose decaying kernels are also explored. The performance of the methodology is studied using experimental data from wind tunnel tests of a twin deck section. The regularised Volterra models show equal or better results in terms of modelling the self-excited forces, and the regularisation makes the models less prone to overfitting.

Funder

Norconsult AS

The Norwegian Public Roads Administration

The Research Council of Norway

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3