Fast data-driven model reduction for nonlinear dynamical systems

Author:

Axås JoarORCID,Cenedese Mattia,Haller George

Abstract

AbstractWe present a fast method for nonlinear data-driven model reduction of dynamical systems onto their slowest nonresonant spectral submanifolds (SSMs). While the recently proposed reduced-order modeling method SSMLearn uses implicit optimization to fit a spectral submanifold to data and reduce the dynamics to a normal form, here, we reformulate these tasks as explicit problems under certain simplifying assumptions. In addition, we provide a novel method for timelag selection when delay-embedding signals from multimodal systems. We show that our alternative approach to data-driven SSM construction yields accurate and sparse rigorous models for essentially nonlinear (or non-linearizable) dynamics on both numerical and experimental datasets. Aside from a major reduction in complexity, our new method allows an increase in the training data dimensionality by several orders of magnitude. This promises to extend data-driven, SSM-based modeling to problems with hundreds of thousands of degrees of freedom.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference55 articles.

1. Abramian, A., Virot, E., Lozano, E., Rubinstein, S., Schneider, T.: Nondestructive prediction of the buckling load of imperfect shells. Phys. Rev. Lett. 125, 225504 (2020)

2. Abramson, H. (ed.): The dynamic behavior of liquids in moving containers: with applications to space vehicle technology. In: Norman Abramson, H. (eds) NASA SP-106. Scientific and Technical Information Division. National Aeronautics and Space Administration, Washington, DC (1966)

3. Awrejcewicz, J., Krys’ko, V.A., Vakakis, A.F.: Order Reduction by Proper Orthogonal Decomposition (POD) Analysis, pp. 279–320. Springer, Berlin (2004)

4. Balachandran, B., Nayfeh, A., Pappa, R., Smith, S.: Identification of nonlinear interactions in structures. J. Guid. Control Dyn. 17, 257–262 (1994). https://doi.org/10.2514/3.21191

5. Brake, M.: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Springer International Publishing, Berlin (2018)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-driven model reduction for pipes conveying fluid via spectral submanifolds;International Journal of Mechanical Sciences;2024-09

2. Data-driven linearization of dynamical systems;Nonlinear Dynamics;2024-08-15

3. Data-driven discovery of quasiperiodically driven dynamics;Nonlinear Dynamics;2024-07-29

4. Sparse-coded Time-delay Graph DMD for Prediction of River Water Level Distribution;2024 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC);2024-07-02

5. Model reduction to spectral submanifolds in piecewise smooth dynamical systems;International Journal of Non-Linear Mechanics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3