Bursting in a next generation neural mass model with synaptic dynamics: a slow–fast approach

Author:

Taher HalgurdORCID,Avitabile DanieleORCID,Desroches MathieuORCID

Abstract

AbstractWe report a detailed analysis on the emergence of bursting in a recently developed neural mass model that includes short-term synaptic plasticity. Neural mass models can mimic the collective dynamics of large-scale neuronal populations in terms of a few macroscopic variables like mean membrane potential and firing rate. The present one is particularly important, as it represents an exact meanfield limit of synaptically coupled quadratic integrate and fire (QIF) neurons. Without synaptic dynamics, a periodic external current with slow frequency$$\varepsilon $$εcan lead to burst-like dynamics. The firing patterns can be understood using singular perturbation theory, specifically slow–fast dissection. With synaptic dynamics, timescale separation leads to a variety of slow–fast phenomena and their role for bursting becomes inordinately more intricate. Canards are crucial to understand the route to bursting. They describe trajectories evolving nearby repelling locally invariant sets of the system and exist at the transition between subthreshold dynamics and bursting. Near the singular limit$$\varepsilon = 0$$ε=0, we report peculiarjump-on canards, which block a continuous transition to bursting. In the biologically more plausible$$\varepsilon $$ε-regime, this transition becomes continuous and bursts emerge via consecutive spike-adding transitions. The onset of bursting is complex and involvesmixed-type-like torus canards, which form the very first spikes of the burst and follow fast-subsystem repelling limit cycles. We numerically evidence the same mechanisms to be responsible for bursting emergence in the QIF network with plastic synapses. The main conclusions apply for the network, owing to the exactness of the meanfield limit.

Funder

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3