Soliton, periodic and superposition solutions to nonlocal (2+1)-dimensional, extended KdV equation derived from the ideal fluid model

Author:

Rozmej PiotrORCID,Karczewska AnnaORCID

Abstract

AbstractWe present new (2+1)-dimensional extended KdV (KdV2) equation derived within an ideal fluid model. Next, we show several families of analytic solutions to this equation. The solutions are expressed by functions of argument $$\xi = (k x +l y-\omega t)$$ ξ = ( k x + l y - ω t ) . We found the soliton solutions in the form $$A\,\text {sech}^{2}(\xi )$$ A sech 2 ( ξ ) , periodic solutions in the form $$A\,\text {cn}^{2}(\xi ,m)$$ A cn 2 ( ξ , m ) and superposition solutions in the form $$\frac{A}{2}[\text {dn}^{2}(\xi ,m)\pm \sqrt{m}\,\text {cn}(\xi ,m)\text {dn} (\xi ,m)]$$ A 2 [ dn 2 ( ξ , m ) ± m cn ( ξ , m ) dn ( ξ , m ) ] analogous to the solutions of (1+1)-dimensional, extended KdV equation and to the solutions to ordinary Korteweg-de Vries equation. On the other hand, the existence of these families of analytical solutions for the highly nonlinear non-local (2+1)-dimensional, extended KdV equation is astounding. The existence of essentially one-dimensional solutions to the (2+1)-dimensional extended KdV equation explains the enormous success of the one-dimensional nonlinear wave equations for the shallow water problem.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

Reference40 articles.

1. Wazwaz, A.-M.: Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation. Appl. Math. Comput. 204, 20–26 (2008)

2. Wazwaz, A.-M.: Four (2+1)-dimensional integrable extensions of the KdV equation: multiple-soliton and multiple singular soliton solutions. Appl. Math. Comput. 215, 1463–1476 (2009)

3. Zhai, L., Zhao, J.: The Pfaffian Technique: A (2+1)-Dimensional Korteweg de Vries Equation. J. Appl. Math. Phys. 4, 1930–1935 (2016)

4. Zhang, X., Chen, Y.: Deformation rogue wave to the (2+1)-dimensional KdV equation. Nonlinear Dynam. 90, 755–763 (2017)

5. Lou, S.-Y.: A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures. Chinese Phys. B 29, 080502 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3