Localized stationary seismic waves predicted using a nonlinear gradient elasticity model

Author:

Dostal LeoORCID,Hollm Marten,Metrikine Andrei V.,Tsouvalas Apostolos,van Dalen Karel N.

Abstract

AbstractThis paper aims at investigating the existence of localized stationary waves in the shallow subsurface whose constitutive behavior is governed by the hyperbolic model, implying non-polynomial nonlinearity and strain-dependent shear modulus. To this end, we derive a novel equation of motion for a nonlinear gradient elasticity model, where the higher-order gradient terms capture the effect of small-scale soil heterogeneity/micro-structure. We also present a novel finite-difference scheme to solve the nonlinear equation of motion in space and time. Simulations of the propagation of arbitrary initial pulses clearly reveal the influence of the nonlinearity: strain-dependent speed in general and, as a result, sharpening of the pulses. Stationary solutions of the equation of motion are obtained by introducing the moving reference frame together with the stationarity assumption. Periodic (with and without a descending trend) as well as localized stationary waves are found by analyzing the obtained ordinary differential equation in the phase portrait and integrating it along the different trajectories. The localized stationary wave is in fact a kink wave and is obtained by integration along a homoclinic orbit. In general, the closer the trajectory lies to a homoclinic orbit, the sharper the edges of the corresponding periodic stationary wave and the larger its period. Finally, we find that the kink wave is in fact not a true soliton as the original shapes of two colliding kink waves are not recovered after interaction. However, it may have high amplitude and reach the surface depending on the damping mechanisms (which have not been considered). Therefore, seismic site response analyses should not a priori exclude the presence of such localized stationary waves.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3