Knockout of M-LP/Mpv17L, a newly identified atypical PDE, induces physiological afferent cardiac hypertrophy in mice

Author:

Iida Reiko,Ueki Misuzu,Yasuda Toshihiro

Abstract

AbstractM-LP/Mpv17L (Mpv17-like protein) is an atypical cyclic nucleotide phosphodiesterase (PDE) without the molecular structure characteristic of the PDE family. Deficiency of M-LP/Mpv17L in mice has been found to result in development of β-cell hyperplasia and improved glucose tolerance. Here, we report another phenotype observed in M-LP/Mpv17L-knockout (KO) mice: afferent cardiac hypertrophy. Although the hearts of M-LP/Mpv17L-KO mice did not differ in size from those of wild-type mice, there was marked narrowing of the left ventricular lumen and thickening of the ventricular wall. The diameter and cross-sectional area of cardiomyocytes in 8-month-old M-LP/Mpv17L-KO mice were increased 1.16-fold and 1.35-fold, respectively, relative to control mice, but showed no obvious abnormalities of cell structure, fibrosis or impaired cardiac function. In 80-day-old KO mice, the expression of hypertrophic marker genes, brain natriuretic peptide (BNF), actin alpha cardiac muscle 1 (ACTC1) and actin alpha 1 skeletal muscle (ACTA1), as well as the Wnt/β-catenin pathway target genes, lymphoid enhancer-binding factor-1 (LEF1), axis inhibition protein 2 (AXIN2) and transcription factor 7 (TCF7), was significantly up-regulated relative to control mice, whereas fibrosis-related genes such as fibronectin 1 (FN1) and connective tissue growth factor (CTGF) were down-regulated. Western blot analysis revealed increased phosphorylation of molecules downstream of the cAMP/PKA signaling pathway, such as β-catenin, ryanodine receptor 2 (RyR2), phospholamban (PLN) and troponin I (cTnI), as well as members of the MEK1-ERK1/2 signaling pathway, which is strongly involved in afferent cardiac hypertrophy. Taken together, these findings indicate that M-LP/Mpv17L is one of the PDEs actively functioning in the heart and that deficiency of M-LP/Mpv17L in mice promotes physiological cardiac hypertrophy.

Funder

Japan Society for the Promotion of Science

University of Fukui

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Genetics,Animal Science and Zoology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3