Abstract
AbstractThe Nubian ibex (Capra nubiana) is a wild goat species that inhabits the Sahara and Arabian deserts and is adapted to extreme ambient temperatures, intense solar radiation, and scarcity of food and water resources. To investigate desert adaptation, we explored the possible role of copy number variations (CNVs) in the evolution of Capra species with a specific focus on the environment of Capra nubiana. CNVs are structural genomic variations that have been implicated in phenotypic differences between species and could play a role in species adaptation. CNVs were inferred from Capra nubiana sequence data relative to the domestic goat reference genome using read-depth approach. We identified 191 CNVs overlapping with protein-coding genes mainly involved in biological processes such as innate immune response, xenobiotic metabolisms, and energy metabolisms. We found copy number variable genes involved in defense response to viral infections (Cluster of Differentiation 48, UL16 binding protein 3, Natural Killer Group 2D ligand 1-like, and Interferon-induced transmembrane protein 3), possibly suggesting their roles in Nubian ibex adaptations to viral infections. Additionally, we found copy number variable xenobiotic metabolism genes (carboxylesterase 1, Cytochrome P450 2D6, Glutathione S-transferase Mu 4, and UDP Glucuronosyltransferase-2B7), which are probably an adaptation of Nubian ibex to desert diets that are rich in plant secondary metabolites. Collectively, this study's results advance our understanding of CNVs and their possible roles in the adaptation of Nubian ibex to its environment. The copy number variable genes identified in Nubian ibex could be considered as subjects for further functional characterizations.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献