Molecular Evolution of Tooth-Related Genes Provides New Insights into Dietary Adaptations of Mammals

Author:

Mu Yuan,Tian Ran,Xiao Linlin,Sun Di,Zhang Zepeng,Xu Shixia,Yang Guang

Abstract

AbstractMammals have evolved different tooth phenotypes that are hypothesized to be associated with feeding habits. However, the genetic basis for the linkage has not been well explored. In this study, we investigated 13 tooth-related genes, including seven enamel-related genes (AMELX, AMBN, ENAM, AMTN, ODAM, KLK4 and MMP20) and six dentin-related genes (DSPP, COL1A1, DMP1, IBSP, MEPE and SPP1), from 63 mammals to determine their evolutionary history. Our results showed that different evolutionary histories have evolved among divergent feeding habits in mammals. There was stronger positive selection for eight genes (ENAM, AMTN, ODAM, KLK4, DSPP, DMP1, COL1A1, MEPE) in herbivore lineages. In addition, AMELX, AMBN, ENAM, AMTN, MMP20 and COL1A1 underwent accelerated evolution in herbivores. While relatively strong positive selection was detected in IBSP, SPP1, and DSPP, accelerated evolution was only detected for MEPE and SPP1 genes among the carnivorous lineages. We found positive selection on AMBN and ENAM genes for omnivorous primates in the catarrhini clade. Interestingly, a significantly positive association between the evolutionary rate of ENAM, ODAM, KLK4, MMP20 and the average enamel thickness was found in primates. Additionally, we found molecular convergence in some amino acid sites of tooth-related genes among the lineages whose feeding habit are similar. The positive selection of related genes might promote the formation and bio-mineralization of tooth enamel and dentin, which would make the tooth structure stronger. Our results revealed that mammalian tooth-related genes have experienced variable evolutionary histories, which provide some new insights into the molecular basis of dietary adaptation in mammals.

Funder

the Key Project of the NSFC

National Key Program of Research and Development, Ministry of Science and Technology of China

National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3