Bayesian Cross-Validation Comparison of Amino Acid Replacement Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities, and Gamma-Distributed Rates-Across-Sites

Author:

Bujaki Thomas,Rodrigue Nicolas

Abstract

AbstractModels of amino acid replacement are central to modern phylogenetic inference, particularly so when dealing with deep evolutionary relationships. Traditionally, a single, empirically derived matrix was utilized, so as to keep the degrees-of-freedom of the inference low, and focused on topology. With the growing size of data sets, however, an amino acid-level general-time-reversible matrix has become increasingly feasible, treating amino acid exchangeabilities and frequencies as free parameters. Moreover, models based on mixtures of multiple matrices are increasingly utilized, in order to account for across-site heterogeneities in amino acid requirements of proteins. Such models exist as finite empirically-derived amino acid profile (or frequency) mixtures, free finite mixtures, as well as free Dirichlet process-based infinite mixtures. All of these approaches are typically combined with a gamma-distributed rates-across-sites model. In spite of the availability of these different aspects to modeling the amino acid replacement process, no study has systematically quantified their relative contributions to their predictive power of real data. Here, we use Bayesian cross-validation to establish a detailed comparison, while activating/deactivating each modeling aspect. For most data sets studied, we find that amino acid mixture models can outrank all single-matrix models, even when the latter include gamma-distributed rates and the former do not. We also find that free finite mixtures consistently outperform empirical finite mixtures. Finally, the Dirichlet process-based mixture model tends to outperform all other approaches.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3