Effect of kaolin-nano-silica mixture on geomechanical properties enhancement of soils

Author:

Shalaby Ola BakrORCID,Elkady Hala M.,Salah Mohamed,Nagy Nabil M.,Fayed Ayman L.

Abstract

AbstractWeak soil is a major obstacle facing the urban development of any site with other exceptional merits. The current study aims to investigate the utilization of nano-silica in enhancing the mechanical properties of weak kaolin soils. Design mixes using different percentages of nano-silica were investigated in the range between 0.25–1.20% from the dry weight of the kaolin soil. Various chemical, physical, and mechanical properties of each mixture have been investigated. The obtained results indicated that nano-silica addition to such kaolin soils decreased the plasticity index and the maximum dry density while increasing the plastic limit, the Liquid limit, and the optimum moisture content. In different curing days of the tested mixtures, maximum dry density was decreased, while the optimum moisture content increased. The optimum value of added nano-silica was less than 1% of the soil dry weight. In the modified kaolin soil with 0.9% nano-silica, the plastic limit was increased by 29%, while the liquid limit decreased by 13% in comparison with the untreated sample. After 28 days of the cured sample, the unconfined compressive strength readings increased by almost 14% compared to its reading on day one. Also, the California bearing ratio results recorded significant enhancement with nano-silica additives in comparison with the untreated kaolin soil. After 28 curing days, the sonicated samples recorded enhancement in the unconfined compressive strength readings by more than 5% and 9% with the additive N-Si (0.3% and 0.9%), respectively, when compared with the unsonicated samples. Graphical Abstract

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3