Abstract
AbstractThis study presents an observer-based anti-windup robust proportional–integral–derivative controller with state estimator method for damped outrigger structure using magneto-rheological damper to mitigate the seismic response. In this approach, full-order Kalman observer is designed for estimating the states of the damped outrigger system from the feedback of the system output with optimum observer gain. However, due to the computational complexity, the integral windup is observed in the loop; therefore, integral anti-windup is introduced for the internal stability in the loop to produce the desired output. The semi-active magneto-rheological damper is integrated with the proposed system, to produce the required force by the system that ranges between the maximum and minimum values as regulated by the voltages produced by the controller in action for every instant of the seismic energy. The proposed strategy is designed in MATLAB and Simulink to find the adequacy of the damped outrigger system in terms of mitigating the following seismic responses like displacement, velocity, and acceleration. The dynamic analysis of the damped outrigger structure with the proposed control strategy shows enhanced performance in reducing the response of the structure as observed in peak response values. The evaluation criteria show a significant reduction in the vibration of the structure.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献