Author:
Abbaszadeh Shahri Abbas,Larsson Stefan,Johansson Fredrik
Abstract
Abstract
Although there are many proposed relations for different rock types to predict the uniaxial compressive strength (UCS) as a function of P-wave velocity (V
P) and point load index (Is), only a few of them are focused on marlstones. However, these studies have limitations in applicability since they are mainly based on local studies. In this paper, an attempt is therefore made to present updated relations for two previous proposed correlations for marlstones in Iran. The modification process is executed through multivariate regression analysis techniques using a provided comprehensive database for marlstones in Iran, including UCS, V
P and Is from publications and validated relevant sources comprising 119 datasets. The accuracy, appropriateness and applicability of the obtained modifications were tested by means of different statistical criteria and graph analyses. The conducted comparison between updated and previous proposed relations highlighted better applicability in the prediction of UCS using the updated correlations introduced in this study. However, the derived updated predictive models are dependent on rock types and test conditions, as they are in this study.
Publisher
Springer Science and Business Media LLC
Subject
Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering,Engineering (miscellaneous)
Reference49 articles.
1. Abbaszadeh Shahri A (2010) Identification and estimation of nonlinear site effect characteristics in sedimentary basin subjected to earthquake excitations. Ph.D dissertation, Department of Geophysics, Science and research branch, Islamic Azad University, Tehran, Iran
2. Abbaszadeh Shahri A, Larsson S, Johansson F (2015) CPT-SPT correlations using artificial neural network approach—a case study in Sweden. Electron J Geotech Eng (EJGE), 20 (Bund. 28): 13439–13460
3. Abbaszadeh Shahri A (2016) An optimized artificial neural network structure to predict clay sensitivity in a high landslide prone area using piezocone penetration test (CPTu) data: a case study in southwest of Sweden. Geotech Geol Eng 34(2):745–758. doi:10.1007/s10706-016-9976-y
4. Alber M, Heiland J (2001) Investigation of a limestone pillar failure: part 1; geology, laboratory testing and numerical modeling. Rock Mech Rock Eng 34(3):167–186
5. Akram M, Bakar MZA (2007) Correlation between uniaxial compressive strength and point load index for salt-range rocks. Pak J Engg Appl Sci 1:1–8
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献