Measurement of specific storage of rock for supercritical carbon dioxide using constant flow pump and constant head permeability techniques

Author:

Arsyad ArdyORCID,Mitani Yasuhiro,Ikemi Hiro

Abstract

Abstract Advanced laboratory system of rock permeability test associated with constant flow pump, and constant head permeability techniques were developed to measure permeability and specific storage of rock for supercritical CO2. The laboratory system was designed to be capable in reproducing similar physical condition of deep aquifer within high pressure and high temperature where CO2 tends to be in supercritical state. To analyze the result of permeability tests, mathematical models of constant flow pump and constant head permeability techniques were modified to deal with two-phase flow drainage displacement of CO2-water in rock. For the examination of its applicability, experimental tests and numerical analysis were undertaken. The accuracy of the obtained specific storage was validated by employing a ratio of the specific storage of the rock specimen to the storage capacity of the pump used in the permeability test. It was found that the specific storage of low permeability sandstone for storing supercritical CO2 is 1.63 × 10−4 1/Pa, while large permeability sandstone has the specific storage for supercritical CO2 at 1.12 × 10−7 1/Pa. This finding suggested that advanced experimental system of constant flow pump and constant head permeability technique can be used as repeatable, accurate and standardized laboratory test in measuring specific storage of sedimentary rock for CO2 in supercritical state.

Funder

Endeavour Postdoctoral Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3